-
(Zangwill 1969) Zangwill, W. I. (1969). Nonlinear programming: a unified approach.
-
(Besag 1986) Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society Series B: Statistical Methodology, 48(3), 259-279.
-
(Glendinning 1989) Glendinning, R. H. (1989). An evaluation of the ICM algorithm for image reconstruction. Journal of Statistical Computation and Simulation, 31(3), 169-185.
-
(Hornik et al., 1989) Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366.
-
(Tibshirani et al., 1996) Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267-288.
-
(Schein et al., 2002) Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002, August). Methods and metrics for cold-start recommendations. In Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 253-260).
-
(Mnih et al., 2007) Mnih, A., & Salakhutdinov, R. R. (2007). Probabilistic matrix factorization. Advances in neural information processing systems, 20.
-
(Meka et al., 2008) Meka, R., Jain, P., Caramanis, C., & Dhillon, I. S. (2008, July). Rank minimization via online learning. In Proceedings of the 25th International Conference on Machine learning (pp. 656-663).
-
(Koren et al., 2009) Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37.
-
(Su et al., 2009) Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009.
-
(Keshavan et al., 2010) Keshavan, R. H., Montanari, A., & Oh, S. (2010). Matrix completion from a few entries. IEEE transactions on information theory, 56(6), 2980-2998.
-
(Rendle 2010) Rendle, S. (2010, December). Factorization machines. In 2010 IEEE International conference on data mining (pp. 995-1000). IEEE.
-
(Menon et al., 2011) Menon, A. K., Chitrapura, K. P., Garg, S., Agarwal, D., & Kota, N. (2011, August). Response prediction using collaborative filtering with hierarchies and side-information. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 141-149).
-
(Candes et al., 2012) Candes, E., & Recht, B. (2012). Exact matrix completion via convex optimization. Communications of the ACM, 55(6), 111-119.
-
(Jain et al., 2013) Jain, P., Netrapalli, P., & Sanghavi, S. (2013, June). Low-rank matrix completion using alternating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing (pp. 665-674).
-
(Lee et al., 2013) Lee, J., Kim, S., Lebanon, G., & Singer, Y. (2013, May). Local low-rank matrix approximation. In International conference on machine learning (pp. 82-90). PMLR.
-
(Shi et al., 2014) Shi, Y., Larson, M., & Hanjalic, A. (2014). Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges. ACM Computing Surveys (CSUR), 47(1), 1-45.
-
(Yuan et al., 2014) Yuan, T., Cheng, J., Zhang, X., Qiu, S., & Lu, H. (2014, June). Recommendation by mining multiple user behaviors with group sparsity. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 28, No. 1).
-
(Chen et al., 2015) Chen, C., Li, D., Zhao, Y., Lv, Q., & Shang, L. (2015, August). WEMAREC: Accurate and scalable recommendation through weighted and ensemble matrix approximation. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval (pp. 303-312).
-
(Sedhain et al., 2015) Sedhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015, May). Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th international conference on World Wide Web (pp. 111-112).
-
(Bhojanapalli et al., 2016) Bhojanapalli, S., Neyshabur, B., & Srebro, N. (2016). Global optimality of local search for low rank matrix recovery. Advances in Neural Information Processing Systems, 29.
-
(Chen et al., 2016) Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
-
(Chen et al., 2016a) Chen, C., Li, D., Lv, Q., Yan, J., Chu, S. M., & Shang, L. (2016, July). MPMA: Mixture Probabilistic Matrix Approximation for Collaborative Filtering. In IJCAI (pp. 1382-1388).
-
(Ge et al., 2016) Ge, R., Lee, J. D., & Ma, T. (2016). Matrix completion has no spurious local minimum. Advances in neural information processing systems, 29.
-
(Juan et al., 2016) Juan, Y., Zhuang, Y., Chin, W. S., & Lin, C. J. (2016, September). Field-aware factorization machines for CTR prediction. In Proceedings of the 10th ACM conference on recommender systems (pp. 43-50).
-
(Li et al., 2016) Li, D., Chen, C., Lv, Q., Yan, J., Shang, L., & Chu, S. (2016, June). Low-rank matrix approximation with stability. In International Conference on Machine Learning (pp. 295-303). PMLR.
-
(Zheng et al., 2016) Zheng, Y., Tang, B., Ding, W., & Zhou, H. (2016, June). A neural autoregressive approach to collaborative filtering. In International Conference on Machine Learning (pp. 764-773). PMLR.
-
(Berg et al., 2017) Berg, R. V. D., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263.
-
(Ge et al., 2017) Ge, R., Jin, C., & Zheng, Y. (2017, July). No spurious local minima in nonconvex low rank problems: A unified geometric analysis. In International Conference on Machine Learning (pp. 1233-1242). PMLR.
-
(Guo et al., 2017) Guo, H., Tang, R., Ye, Y., Li, Z., & He, X. (2017). DeepFM: a factorization-machine based neural network for CTR prediction. arXiv preprint arXiv:1703.04247.
-
(He et al., 2017) He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017, April). Neural collaborative filtering. In Proceedings of the 26th international conference on world wide web (pp. 173-182).
-
(Ke et al., 2017) Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., … & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
-
(Lee et al., 2017) Lee, W., Song, K., & Moon, I. C. (2017, November). Augmented variational autoencoders for collaborative filtering with auxiliary information. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (pp. 1139-1148).
-
(Li et al., 2017) Li, D., Chen, C., Liu, W., Lu, T., Gu, N., & Chu, S. (2017). Mixture-rank matrix approximation for collaborative filtering. Advances in Neural Information Processing Systems, 30.
-
(Saraswathi et a., 2017) Saraswathi, K., Saravanan, B., Suresh, Y., & Senthilkumar, J. (2017, November). Survey: a hybrid approach to solve cold-start problem in online recommendation system. In Proceedings of the International Conference on Intelligent Computing Systems (ICICS 2017–Dec 15th-16th 2017) organized by Sona College of Technology, Salem, Tamilnadu, India.
-
(Volkovs et al., 2017) Volkovs, M., Yu, G., & Poutanen, T. (2017). Dropoutnet: Addressing cold start in recommender systems. Advances in neural information processing systems, 30.
-
(Du et al., 2018) Du, C., Li, C., Zheng, Y., Zhu, J., & Zhang, B. (2018, April). Collaborative filtering with user-item co-autoregressive models. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1).
-
(Lian et al., 2018) Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., & Sun, G. (2018, July). xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 1754-1763).
-
(Liang et al., 2018) Liang, D., Krishnan, R. G., Hoffman, M. D., & Jebara, T. (2018, April). Variational autoencoders for collaborative filtering. In Proceedings of the 2018 world wide web conference (pp. 689-698).
-
(Pimentel-Alarcón 2018) Pimentel-Alarcón, D. (2018). Mixture matrix completion. Advances in Neural Information Processing Systems, 31.
-
(Prokhorenkova et al., 2018) Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems, 31.
-
(Ban et al., 2019) Ban, F., Woodruff, D., & Zhang, R. (2019). Regularized weighted low rank approximation. Advances in neural information processing systems, 32.
-
(Chen et al., 2019) Chen, Y., Chen, B., He, X., Gao, C., Li, Y., Lou, J. G., & Wang, Y. (2019, July). λopt: Learn to regularize recommender models in finer levels. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 978-986).
-
(Popov et al., 2019) Popov, S., Morozov, S., & Babenko, A. (2019). Neural oblivious decision ensembles for deep learning on tabular data. arXiv preprint arXiv:1909.06312.
-
(Rama et al., 2019) Rama, K., Kumar, P., & Bhasker, B. (2019). Deep learning to address candidate generation and cold start challenges in recommender systems: A research survey. arXiv preprint arXiv:1907.08674.
-
(Sachdeva et al., 2019) Sachdeva, N., Manco, G., Ritacco, E., & Pudi, V. (2019, January). Sequential variational autoencoders for collaborative filtering. In Proceedings of the twelfth ACM international conference on web search and data mining (pp. 600-608).
-
(Song et al., 2019) Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., & Tang, J. (2019, November). Autoint: Automatic feature interaction learning via self-attentive neural networks. In Proceedings of the 28th ACM international conference on information and knowledge management (pp. 1161-1170).
-
(Huang et al., 2020) Huang, X., Khetan, A., Cvitkovic, M., & Karnin, Z. (2020). Tabtransformer: Tabular data modeling using contextual embeddings. arXiv preprint arXiv:2012.06678.
-
(Rendle et al., 2020) Rendle, S., Krichene, W., Zhang, L., & Anderson, J. (2020, September). Neural collaborative filtering vs. matrix factorization revisited. In Proceedings of the 14th ACM Conference on Recommender Systems (pp. 240-248).
-
(Schifferer et al., 2020) Schifferer, B., Titericz, G., Deotte, C., Henkel, C., Onodera, K., Liu, J., … & Erdem, A. (2020). GPU accelerated feature engineering and training for recommender systems. In Proceedings of the Recommender Systems Challenge 2020 (pp. 16-23).
-
(Abdullah et al., 2021) Abdullah, N. A., Rasheed, R. A., Nasir, M. H. N. M., & Rahman, M. M. (2021). Eliciting auxiliary information for cold start user recommendation: A survey. Applied Sciences, 11(20), 9608.
-
(Arik et al., 2021) Arik, S. Ö., & Pfister, T. (2021, May). Tabnet: Attentive interpretable tabular learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 8, pp. 6679-6687).
-
(Koren et al., 2021) Koren, Y., Rendle, S., & Bell, R. (2021). Advances in collaborative filtering. Recommender systems handbook, 91-142.
-
(Sethi et al., 2021) Sethi, R., & Mehrotra, M. (2021). Cold start in recommender systems—A survey from domain perspective. In Intelligent Data Communication Technologies and Internet of Things: Proceedings of ICICI 2020 (pp. 223-232). Springer Singapore.
-
(Yi et al., 2021) Yi, J., Kim, B., & Chang, B. (2021, December). Embedding Normalization: Significance Preserving Feature Normalization for Click-Through Rate Prediction. In 2021 International Conference on Data Mining Workshops (ICDMW) (pp. 75-84). IEEE.
-
(Yi et al., 2021a) Yi, J., & Chang, B. (2021). Efficient Click-Through Rate Prediction for Developing Countries via Tabular Learning. arXiv preprint arXiv:2104.07553.
-
(Borisov et al., 2022) Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., & Kasneci, G. (2022). Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning Systems.
-
(Panda et al., 2022) Panda, D. K., & Ray, S. (2022). Approaches and algorithms to mitigate cold start problems in recommender systems: a systematic literature review. Journal of Intelligent Information Systems, 59(2), 341-366.
-
(Vančura et al., 2022) Vančura, V., Alves, R., Kasalický, P., & Kordík, P. (2022, September). Scalable linear shallow autoencoder for collaborative filtering. In Proceedings of the 16th ACM Conference on Recommender Systems (pp. 604-609).
-
(Wang et al., 2022) Wang, Z., & Sun, J. (2022). Transtab: Learning transferable tabular transformers across tables. Advances in Neural Information Processing Systems, 35, 2902-2915.
-
(Berisha et al., 2023) Berisha, F., & Bytyçi, E. (2023). Addressing cold start in recommender systems with neural networks: a literature survey. International Journal of Computers and Applications, 45(7-8), 485-496.
-
(Liu et al., 2023) Liu, S., Liu, J., Gu, H., Li, D., Lu, T., Zhang, P., & Gu, N. (2023, October). Autoseqrec: Autoencoder for efficient sequential recommendation. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (pp. 1493-1502).
-
(Shin et al., 2023) Shin, K., Kwak, H., Kim, S. Y., Ramström, M. N., Jeong, J., Ha, J. W., & Kim, K. M. (2023, June). Scaling law for recommendation models: Towards general-purpose user representations. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 4, pp. 4596-4604).
-
(Spišák et al., 2023) Spišák, M., Bartyzal, R., Hoskovec, A., Peska, L., & Tůma, M. (2023, September). Scalable approximate nonsymmetric autoencoder for collaborative filtering. In Proceedings of the 17th ACM Conference on Recommender Systems (pp. 763-770).